

FLOW MEASURE WEIRS

www.baharmuhendislik.com

FLOW MEASURE WEIRS

Technical Specifications

General Description and Intended Use

Parshall weir or square weir is commonly used in entrance and exit channels to measure flow rate of the water discharged with domestic or industrial water entering into wastewater plants. Radar, hydrostatic or ultrasonic type open channel flowmeters measure the flow by reading the water height passing from the section of weir.

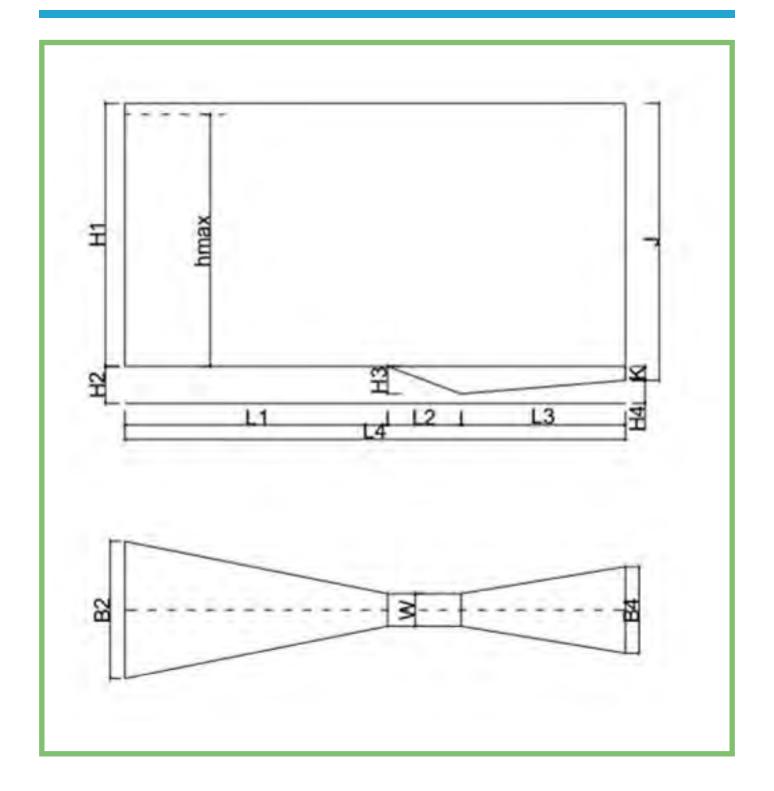
- It is manufactured in any capacity and size.
- It is mounted onto wastewater entrance and exit channels.
- Square weirs are generally used on units with lack of space.
- Parshall weirs are preferred for lower head loss, minimum error margin while measuring flowrate and self-cleaning properties.
- Portable types may be manufactured to eliminate need for concrete construction.

Working Principle Of Equipment

Parshall weirs consist of constriction, throttle and expansion. Probe holders that holds the prob of flow meters are coupled with parshall or square type weirs. Parshall floodgates are fixated into the channel with concrete while square floodgates that are placed in open channel are anchored to sidewalls. Giving water steadily to the weirs is the essential principle. Weirs are mounted onto specially designed constructional channel to cut into water turbulence.

Accessories

Advantages


- Design in Any Size,
- Fast Assembling,
- · Easy Cleaning,
- Design without Maintenance and Service Requirement.
- Probe Holder
- Radar Type Flowmeter*
- Hydrostatic Type Flowmeter*
- Ultrasonic Type Flowmeter*
- Portable Type Mounting Frame*
- * Optional accessories are defined.

Material Details

 Weir: They can be manufactured as DIN 1.4301 (AISI 304) or DIN 1.4401 (AISI 316).

"Different materials can be preferred in accordance with the request of the customer."

w	L1 (mm)	L2 (mm)	L3 (mm)	L4 (mm)	B2 (mm)	B4 (mm)	H1 (mm)	H2 (mm)	H3 (mm)	H4 (mm)	J (mm)	K (mm)	Hmax (mm)	Qmin (m³/ sa)	Qmax (m³/sa)
2′′	406	114	254	774	214	135	410	58	43	36	432	22	393	10	100
3′′	457	152	305	914	259	178	610	75	57	50	635	25	591	27,5	275
6′′	610	305	610	1525	397	394	610	155	114	79	686	76	609	60	600
9"	864	305	457	1626	575	381	762	143	114	67	838	76	753	120	1200
12''	1343	610	914	2867	845	610	914	270	292	194	990	76	885	200	2000

